A glance at Gartner’s sizable list of analytics and business intelligence (BI) tools is all it takes to produce analysis paralysis. Spoiled for choice, business leaders or end users may find it challenging to select appropriate technologies for their reporting and analytical needs. As older platforms adapt to the changing data landscape, new tools surface rapidly.
Business intelligence is a category of applications and technology that turns raw enterprise data into visual reports or insights. BI tools enhance corporate decision-making, help inform strategy, and impart direct analytical power to users across the entire organization.
BI tools serve myriad purposes, from the most technical aspects of a data mining operation to a manager’s simple need to aggregate a cross-section of records and pull up an informative chart.
Although designed for a generally nontechnical audience, nearly all BI software requires some degree of training for proficiency. Knowing which stakeholders will utilize a BI system, and understanding these users’ capabilities and needs, are critical steps when selecting BI software.
When assessing an organization’s need for BI infrastructure — and when evaluating actual BI tools — managers and users may encounter terms or concepts that, while familiar, may need further definition or context. Here are a few important ones:
Business intelligence refers to the discovery and communication of insights or actionable information in enterprise data. Managers use this information to improve business processes and aid in making decisions.
Analytics refers to the exploration and propagation of patterns and knowledge in data, which might be expressed through simple statistical tests or predictive systems powered by machine learning.
Other phrases that are important when selecting a BI or analytics tool:
Try Stitch with your data warehouse and favorite BI tool today
While there are dozens of BI and analytics tools, Stitch surveyed its customers to learn which ones they use. These seven tools were mentioned most often:
These tools are just a part of a much larger analytics universe that includes tools for most use cases and budgets.
Anyone tasked with selecting the most appropriate BI tool for their organization should review both market research and product features, and match the applications with their business requirements to find the best fit.
An enterprise’s size and growth also are important factors. For example, lightweight tools and software are cheaper, and are best for small companies with less data variety and volume to manage.
Use case is a crucial consideration. A logistics company, interested in optimizing routes and preventing driver churn, would prioritize different BI features than, say, a digital marketing company, more interested in sourcing information or measuring user engagement.
A simple tool with fewer features might be easier to learn, and more cost-effective, when training beginner users. A more sophisticated tool might be appropriate if end users are expected to be well-versed in the software, or in analytics generally.
One challenge many organizations encounter when analyzing their data is the quality and level of integration of their data warehouse and underlying ETL/ELT processes. The centralized repository must be a consolidated, accessible, and accurate source of data. In fact, the most important step when deploying BI and analytics is not necessarily choosing the right tool or implementation, but rather verifying that functional and operational data systems are trusted and dependable at the outset.
For example, AMARO, an online fashion retailer that wanted to build intelligence to understand customers better, found that simplifying ingestion and carefully integrating data sources were key steps to building out its BI infrastructure.
On the other hand, Oodle’s journey is a great example of how business intelligence can be an unintentional misnomer, if the tools or the implementation are bad. A digital marketing agency searching for a better ETL solution, Oodle paid for one bundled inside a BI platform. Unfortunately, the data ingestion portion of this offering was weak. After just two months, major (planned, public) changes to external APIs went unsupported and the tool became immediately unusable.
The lessons here are: 1) BI tools should provide actual business value, and 2) data ingestion and ETL/ELT are key components of data pipelines serving available, high-quality, and secure data. Optimized data ingestion is the fuel for better BI, if not a foundational requirement for effective analytic deployments.
Stitch supports dozens of sources and all leading destinations for enterprise data, as well as integration with a full complement of BI/data analysis tools. If your business is ready to build out its BI infrastructure, sign up for Stitch for free and begin optimizing a powerful, fast, available data pipeline.
Stitch streams all of your data directly to your analytics warehouse.
Set up in minutesUnlimited data volume during trial